Časovno odvisna perturbacija V
Iz Kvantna mehanika I 2007 - 2008
(Primerjava redakcij)
Redakcija: 11:12, 12 maj 2008 (spremeni) Asistent (Pogovor | prispevki) (New page: == Naloga == Vodikov atom je v homogenem električnem polju <math>E(t)=E_0\frac{1}{1+\left(\frac{t}{\tau}\right)^2}</math>. Kolikšna je verjetnost, daje atom ob <math>t=\infty</math> ...) ← Pojdi na prejšnje urejanje |
Trenutna redakcija (11:06, 19 maj 2010) (spremeni) (undo) Asistent (Pogovor | prispevki) m (vrnitev sprememb uporabnika »213.157.91.164« (pogovor) na zadnje urejanje uporabnika »Asistent«) |
||
( not shown.) | |||
Vrstica 7: | Vrstica 7: | ||
Kolikšna je verjetnost, daje atom ob <math>t=\infty</math> v prvem vzbujenem stanju, če je bil ob <math>t=-\infty</math> v osnovnem stanju? Pri katerem <math>\tau</math> je ta verjetnost največja? Predpostavi, da je električno polje dovolj šibko, da lahko uporabiš perturbacijsko teorijo. | Kolikšna je verjetnost, daje atom ob <math>t=\infty</math> v prvem vzbujenem stanju, če je bil ob <math>t=-\infty</math> v osnovnem stanju? Pri katerem <math>\tau</math> je ta verjetnost največja? Predpostavi, da je električno polje dovolj šibko, da lahko uporabiš perturbacijsko teorijo. | ||
- | == Rešitev == | + | ==[[Media:casovno_odvisna_perturbacijaV.pdf|Rešitev]] == |
+ | |||
+ | Nika je opazila, da smo na vajah napačno zapisali formulo za popravek v prvem redu časovno odvisne perturbacije. Enačba (4) v poročilu bi se morala glasiti | ||
+ | :<math>\frac{\mathrm{d}c_{nlm}(t)}{\mathrm{d}t}=-\frac{i}{\hbar}\sum_{n^\prime l^\prime m^\prime}\left\langle nlmt\left|V(t)\right|n^\prime l^\prime m^\prime t\right\rangle c_{n^\prime l^\prime m^\prime}(t)</math> | ||
+ | Posledično so napačne tudi enačbe (5) - (11), končni rezultat pa je pravilen. Kot vajo za kolokvij bi predlagal, da sami popravite še ostale napačne enačbe. Lp Tomaž |
Trenutna redakcija
[spremeni] Naloga
Vodikov atom je v homogenem električnem polju
.
Kolikšna je verjetnost, daje atom ob v prvem vzbujenem stanju, če je bil ob v osnovnem stanju? Pri katerem τ je ta verjetnost največja? Predpostavi, da je električno polje dovolj šibko, da lahko uporabiš perturbacijsko teorijo.
[spremeni] Rešitev
Nika je opazila, da smo na vajah napačno zapisali formulo za popravek v prvem redu časovno odvisne perturbacije. Enačba (4) v poročilu bi se morala glasiti
Posledično so napačne tudi enačbe (5) - (11), končni rezultat pa je pravilen. Kot vajo za kolokvij bi predlagal, da sami popravite še ostale napačne enačbe. Lp Tomaž