Koherentna stanja harmonskega oscilatorja II
Iz Kvantna mehanika I 2007 - 2008
[spremeni] Naloga
Delec z nabojem e je v osnovnem stanju harmonskega oscilatorja . Ob t = 0 v trenutku vključimo homogeno električno polje E. Kako se s časom spreminjajo pričakovane vrednosti položaja, gibalne količine in energije delca?
[spremeni] Rešitev
S klasično mehaniko bi ta problem lahko predstavljal žogico, nabito z nabojem , ki je pritrjena na vzmet s konstanto vzmeti , v času vključimo zunanje električno polje , ki kaže v smeri vzmeti. Žogica se potem odmakne za in začne nihati s frekvenco , tako da sta pričakovani vrednosti položaja in gibalne količine: in . Pričakovana vrednost energije pa je: .
[spremeni] Reševanje v kvantni mehaniki
Stanja oscilatorja(nabitega delca) bodo za čase t < 0, opisovale količine brez vijuge, za čase pa količine z vijugo.
:
:
, ker je in je je Člen bom zapisal kot in ga še polepšam z novima oznakama in da dobim:
Povezava med in :
-za novo izhodišče koordinatnega sistema po vklopu polja sem izbral novo mirovno lego delca, ki je prvotne legepremaknjena za v desno.
, operator gibalne količine se ne spremeni!
Z novimi koordinatami se hamilton zapiše:
Ker se frekvenca po vklopu polja ne spremeni je zato je
Povezava med in :
Na začetku: , delec je v osnovnem stanju starega .
Za koherentna stanja velja:
Za našo nalogo bom potreboval prejšnje tri lastnosti, ampak za časovno odvisna koherentna stanja, tako da jih bom še malo predelal:
-razvoj koherenčnega stanja po lastnih funkcijah hamiltonovega operatorja
-za časovni razvoj samo dodamo člen , je v naši nalogi
Ker je in je zato , bom v zgornjo enačbo za vstavil :
Konstanto bom označil z in z .Tako je:
Vemo, da velja , ker je razvoj koherentnega stanja za po lastnih funkcijah hamiltonovega operatorja.
To upoštevam v našem primeru:
in je koherentna vrednost za , nazaj pogledam vrednost za z: , potem je
Pričakovana vrednost položaja:
in
Pričakovana vrednost gibalne količine:
Ehrenfestov teorem:
-izračunana z ehrenfestovim teoremom.
Iz lastnosti koherentnih stanj: -upošteval sem, da je in torej je , kar se ujema s klasičnim rezultatom in ehrenfestovim teoremom.