Kronig-Penneyev model kristala
Iz Fizika trdne snovi 2007 - 2008
Redakcija: 00:15, 20 januar 2008 (spremeni) 213.250.63.205 (Pogovor) ← Pojdi na prejšnje urejanje |
Redakcija: 21:20, 21 januar 2008 (spremeni) (undo) 195.210.234.108 (Pogovor) Novejše urejanje → |
||
Vrstica 36: | Vrstica 36: | ||
<math>\psi_n(x)=A_{n}e^{iqx}+B_{n}e^{-iqx}=\psi_n(x)=e^{ikx}(A_{n}e^{i(q-k)x}+B_{n}e^{-i(q+k)x})=e^{ikx}u_n(x)</math>, kjer je <math>\psi_n(x)</math> lastna funkcija energije v n-tem področju in <math>q= \sqrt{\frac{2mE}{\hbar^2}}</math> | <math>\psi_n(x)=A_{n}e^{iqx}+B_{n}e^{-iqx}=\psi_n(x)=e^{ikx}(A_{n}e^{i(q-k)x}+B_{n}e^{-i(q+k)x})=e^{ikx}u_n(x)</math>, kjer je <math>\psi_n(x)</math> lastna funkcija energije v n-tem področju in <math>q= \sqrt{\frac{2mE}{\hbar^2}}</math> | ||
+ | |||
+ | Sedaj nesemo dobljeni izraz za ''u(x)'' v pogoj, dobljen iz periodičnosti potenciala: ''u(x)=u(x+a)'': | ||
+ | |||
+ | <math>u_n(x)=u_{n+1}(x+a)</math> | ||
+ | |||
+ | <math>A_{n}e^{i(q-k)x}+B_{n}e^{-i(q+k)x}=A_{n+1}e^{i(q-k)(x+a)}+B_{n+1}e^{-i(q+k)(x+a)}</math>, |
Redakcija: 21:20, 21 januar 2008
Imamo delec v 1D Kronig-Penneyevem potencialu:
Iščemo lastne funkcije energije za ta sistem.
Potencial je več kot očitno periodičen:
Torej tudi za Hamiltonov operator: velja, da je periodičen:
Uvedimo operator translacije:
Za lastne funkcije tega operatorja torej sledi:
Ker je Hamiltonov operator periodičen s periodo a, komutira z operatorjem translacije, torej velja naslednja zveza: .
Od tod sledi, da so lastne funkcije operatorja translacije hkrati tudi lastne fukcije Hamiltonovega operatorja:
Sedaj lahko izvedemo n-kratno translacijo tako, da n-krat delujemo na funkcijo z operatorjem translacije. Temu ustreza premik valovne fukcije za na.
Ker vemo, da je verjetnost, da tam najdemo delec končna in od nič različna in ker imamo neskončen kristal (torej lahko n izberemo poljubno velik), dobimo od tod pogoj za lastno vrednost operatorja translacije kot: | α | = 1, torej jo lahko zapišemo kot α = e − iφ oziroma, če to izrazimo s periodo a, kot α = e − ika
Če sedaj povzamemo vse skupaj: ψa(x − a) = e − ikaψa(x), oziroma ψa(x)eika = ψa(x + a)
Sedaj uporabimo sledeči nastavek:ψa(x) = eikxu(x), katerega nesemo v zgornjo enačbo: eik(x + a)u(x) = eik(x + a)u(x + a) in od tod dobimo pogoj za funkcijo u(x): u(x) = u(x + a). Toliko nam lahko da sama simetrija problema - torej periodičnost potenciala.
Lastne funkcije poiščemo s pomočjo Schrodingerjeve enačbe:
Rešitve v vmesnih področjih, kjer je V=0, so oblike
ψn(x) = Aneiqx + Bne − iqx = ψn(x) = eikx(Anei(q − k)x + Bne − i(q + k)x) = eikxun(x), kjer je ψn(x) lastna funkcija energije v n-tem področju in
Sedaj nesemo dobljeni izraz za u(x) v pogoj, dobljen iz periodičnosti potenciala: u(x)=u(x+a):
un(x) = un + 1(x + a)
Anei(q − k)x + Bne − i(q + k)x = An + 1ei(q − k)(x + a) + Bn + 1e − i(q + k)(x + a),