Kronig-Penneyev model kristala

Iz Fizika trdne snovi 2007 - 2008

(Primerjava redakcij)
Skoči na: navigacija, iskanje
Redakcija: 23:22, 19 januar 2008 (spremeni)
213.250.63.205 (Pogovor)

← Pojdi na prejšnje urejanje
Redakcija: 00:15, 20 januar 2008 (spremeni) (undo)
213.250.63.205 (Pogovor)

Novejše urejanje →
Vrstica 3: Vrstica 3:
Iščemo lastne funkcije energije za ta sistem. Iščemo lastne funkcije energije za ta sistem.
 +
 +----
Potencial je več kot očitno periodičen: <math>V\left(x+a\right)=V\left(x\right)</math> Potencial je več kot očitno periodičen: <math>V\left(x+a\right)=V\left(x\right)</math>
Vrstica 23: Vrstica 25:
Če sedaj povzamemo vse skupaj: <math>\psi_a(x-a)=e^{-ika}\psi_a(x)</math>, oziroma <math>\psi_a(x)e^{ika}=\psi_a(x+a)</math> Če sedaj povzamemo vse skupaj: <math>\psi_a(x-a)=e^{-ika}\psi_a(x)</math>, oziroma <math>\psi_a(x)e^{ika}=\psi_a(x+a)</math>
 +
 +Sedaj uporabimo sledeči nastavek:<math>\psi_a(x)=e^{ikx}u(x)</math>, katerega nesemo v zgornjo enačbo: <math>e^{ik(x+a)}u(x)=e^{ik(x+a)}u(x+a)</math> in od tod dobimo pogoj za funkcijo ''u(x)'': <math>u(x)=u(x+a)</math>. Toliko nam lahko da sama simetrija problema - torej periodičnost potenciala.
 +
 +----
 +
 +Lastne funkcije poiščemo s pomočjo Schrodingerjeve enačbe:
 +<math>i\hbar\frac{\partial\psi}{\partial{t}}=-\frac{\hbar^2}{2m} \frac{\partial^2\psi}{\partial{x}^2} + \hat{V}(x)\psi=\hat{H}\psi=E\psi</math>
 +
 +Rešitve v vmesnih področjih, kjer je V=0, so oblike
 +
 +<math>\psi_n(x)=A_{n}e^{iqx}+B_{n}e^{-iqx}=\psi_n(x)=e^{ikx}(A_{n}e^{i(q-k)x}+B_{n}e^{-i(q+k)x})=e^{ikx}u_n(x)</math>, kjer je <math>\psi_n(x)</math> lastna funkcija energije v n-tem področju in <math>q= \sqrt{\frac{2mE}{\hbar^2}}</math>

Redakcija: 00:15, 20 januar 2008

Imamo delec v 1D Kronig-Penneyevem potencialu: V\left(x\right)=\sum_n\lambda\delta\left(x-na\right)

Iščemo lastne funkcije energije za ta sistem.


Potencial je več kot očitno periodičen: V\left(x+a\right)=V\left(x\right)

Torej tudi za Hamiltonov operator: \hat{H}=\hat{T}+\hat{V}=\frac{\hat{p_x}^2}{2m}+\hat{V}\left(x\right) = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial{x}^2} + \hat{V}(x) velja, da je periodičen: \hat{H}\left(x+a\right)=\hat{H}\left(x\right)

Uvedimo operator translacije: \hat{A}\psi(x)=\psi(x-a)

Za lastne funkcije tega operatorja torej sledi: \hat{A}\psi_a(x)=\alpha\psi_a(x)=\psi_a(x-a)

Ker je Hamiltonov operator periodičen s periodo a, komutira z operatorjem translacije, torej velja naslednja zveza: \hat{A}(\hat{H}\psi_a(x))=\hat{H}(\hat{A}\psi_a(x))=\alpha(\hat{H}\psi_a(x)).

Od tod sledi, da so lastne funkcije operatorja translacije hkrati tudi lastne fukcije Hamiltonovega operatorja: \hat{H}\psi_a(x)=\beta\psi_a(x)

Sedaj lahko izvedemo n-kratno translacijo tako, da n-krat delujemo na funkcijo z operatorjem translacije. Temu ustreza premik valovne fukcije za na. \hat{A}^n\psi_a(x)=\alpha^n\psi_a(x)=\psi_a(x-na)

Ker vemo, da je verjetnost, da tam najdemo delec končna in od nič različna in ker imamo neskončen kristal (torej lahko n izberemo poljubno velik), dobimo od tod pogoj za lastno vrednost operatorja translacije kot: | α | = 1, torej jo lahko zapišemo kot α = eiφ oziroma, če to izrazimo s periodo a, kot α = eika

Če sedaj povzamemo vse skupaj: ψa(xa) = eikaψa(x), oziroma ψa(x)eika = ψa(x + a)

Sedaj uporabimo sledeči nastavek:ψa(x) = eikxu(x), katerega nesemo v zgornjo enačbo: eik(x + a)u(x) = eik(x + a)u(x + a) in od tod dobimo pogoj za funkcijo u(x): u(x) = u(x + a). Toliko nam lahko da sama simetrija problema - torej periodičnost potenciala.


Lastne funkcije poiščemo s pomočjo Schrodingerjeve enačbe: i\hbar\frac{\partial\psi}{\partial{t}}=-\frac{\hbar^2}{2m} \frac{\partial^2\psi}{\partial{x}^2} + \hat{V}(x)\psi=\hat{H}\psi=E\psi

Rešitve v vmesnih področjih, kjer je V=0, so oblike

ψn(x) = Aneiqx + Bneiqx = ψn(x) = eikx(Anei(qk)x + Bnei(q + k)x) = eikxun(x), kjer je ψn(x) lastna funkcija energije v n-tem področju in q= \sqrt{\frac{2mE}{\hbar^2}}