Kronig-Penneyev model kristala

Iz Fizika trdne snovi 2007 - 2008

(Primerjava redakcij)
Skoči na: navigacija, iskanje
Redakcija: 15:26, 18 januar 2008 (spremeni)
87.119.143.25 (Pogovor)

← Pojdi na prejšnje urejanje
Redakcija: 22:47, 19 januar 2008 (spremeni) (undo)
213.250.63.205 (Pogovor)

Novejše urejanje →
Vrstica 9: Vrstica 9:
-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial{x}^2} + \hat{V}(x)</math> velja, da je periodičen: <math>\hat{H}\left(x+a\right)=\hat{H}\left(x\right)</math> -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial{x}^2} + \hat{V}(x)</math> velja, da je periodičen: <math>\hat{H}\left(x+a\right)=\hat{H}\left(x\right)</math>
-Uvedimo operator translacije+Uvedimo operator translacije: <math>\hat{A}\psi(x)=\psi(x-a)</math>
 + 
 +Za lastne funkcije tega operatorja torej sledi: <math>\hat{A}\psi_a(x)=\alpha\psi_a(x)=\psi_a(x-a)</math>
 + 
 +Ker je Hamiltonov operator periodičen s periodo a, komutira z operatorjem translacije, torej velja naslednja zveza: <math>\hat{A}(\hat{H}\psi_a(x))=\hat{H}(\hat{A}\psi_a(x))=\alpha(\hat{H}\psi_a(x))</math>.
 + 
 +Od tod sledi, da so lastne funkcije operatorja translacije hkrati tudi lastne fukcije Hamiltonovega operatorja: <math>\hat{H}\psi_a(x)=k\psi_a(x)</math>

Redakcija: 22:47, 19 januar 2008

Imamo delec v 1D Kronig-Penneyevem potencialu: V\left(x\right)=\sum_n\lambda\delta\left(x-na\right)

Iščemo lastne funkcije energije za ta sistem.

Potencial je več kot očitno periodičen: V\left(x+a\right)=V\left(x\right)

Torej tudi za Hamiltonov operator: \hat{H}=\hat{T}+\hat{V}=\frac{\hat{p_x}^2}{2m}+\hat{V}\left(x\right) = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial{x}^2} + \hat{V}(x) velja, da je periodičen: \hat{H}\left(x+a\right)=\hat{H}\left(x\right)

Uvedimo operator translacije: \hat{A}\psi(x)=\psi(x-a)

Za lastne funkcije tega operatorja torej sledi: \hat{A}\psi_a(x)=\alpha\psi_a(x)=\psi_a(x-a)

Ker je Hamiltonov operator periodičen s periodo a, komutira z operatorjem translacije, torej velja naslednja zveza: \hat{A}(\hat{H}\psi_a(x))=\hat{H}(\hat{A}\psi_a(x))=\alpha(\hat{H}\psi_a(x)).

Od tod sledi, da so lastne funkcije operatorja translacije hkrati tudi lastne fukcije Hamiltonovega operatorja: \hat{H}\psi_a(x)=k\psi_a(x)