Heisenbergov princip nedoločenosti II in komutatorske identitete

Iz Kvantna Mehanika I 2006 - 2007

(Primerjava redakcij)
Skoči na: navigacija, iskanje
Redakcija: 21:11, 12 marec 2007 (spremeni)
Ruskicar (Pogovor | prispevki)

← Pojdi na prejšnje urejanje
Redakcija: 22:13, 12 marec 2007 (spremeni) (undo)
Ruskicar (Pogovor | prispevki)

Novejše urejanje →
Vrstica 9: Vrstica 9:
== Rešitev == == Rešitev ==
-1. Energija osnovnega stanja harmonskega oscilatorja seveda ni enaka nič (kot bi to morda intuitivno pričakovali), saj bi s tem kršili Heisenbergov princip nedoločenosti, ki pravi, da delca ne moremo fiksirati točno na sredino potenciala in ga pustiti tam mirovati.+'''1. del:'''
 + 
 +Energija osnovnega stanja harmonskega oscilatorja seveda ni enaka nič (kot bi to morda intuitivno pričakovali), saj bi s tem kršili Heisenbergov princip nedoločenosti, ki pravi, da delca ne moremo fiksirati točno na sredino potenciala in ga pustiti tam mirovati.
[[Slika:Skica-ho.gif]] [[Slika:Skica-ho.gif]]
Vrstica 51: Vrstica 53:
---- ----
-2. Dokazati hočemo, da velja <math>[A,B^n]=n\, B^{n-1}\,[A,B]</math>, če operatorja A in B zadoščata pogoju <math>[[A,B],\,B]=0</math>. Dokaza se lotimo s principom popolne indukcije. Najprej preverimo, če izraz velja za n=1, potem pa predpostavimo, da velja za n-1 in iz tega pokažemo, da velja tudi za n:+'''2. del:'''
 + 
 +''a)'' Dokazati hočemo, da velja <math>[A,B^n]=n\, B^{n-1}\,[A,B]</math>, če operatorja A in B zadoščata pogoju <math>[[A,B],\,B]=0</math>. Dokaza se lotimo s principom popolne indukcije. Najprej preverimo, če izraz velja za n=1, potem pa predpostavimo, da velja za n-1 in iz tega pokažemo, da velja tudi za n:
<math>n = 1: \quad [A,B^1] = [A,B] </math> <math>n = 1: \quad [A,B^1] = [A,B] </math>
-<math>n \geq 1: \quad [A, B^n] = [A, B\, B^{n-1}]= B[A,B^{n-1}] + [A,B]\,B^{n-1} = B\,(n-1)\,B^{n-2}\,[A,B] + [A,B]\,B^{n-1} = B^{n-1}\,[A,B] (n-1 + 1) = n\,B^{n-1}\,[A,B]</math>+<math>n > 1: \quad [A, B^n] = [A, B\, B^{n-1}]= B[A,B^{n-1}] + [A,B]\,B^{n-1} = </math>
 + 
 +<math>= B\,(n-1)\,B^{n-2}\,[A,B] + [A,B]\,B^{n-1} = </math>
 + 
 +<math> = B^{n-1}\,[A,B] (n-1 + 1) = n\,B^{n-1}\,[A,B]</math>
 + 
 +V prvi vrstici smo uporabili lastnost komutatorja <math> [A,BC] = B\,[A,C] + [A,B]\,C </math>, v drugi vrstici smo uporabili trditev <math>[A,B^n]=n\, B^{n-1}\,[A,B]</math>, ki jo dokazujemo, nazadnje pa smo uporabili še pogoj, da je <math>[[A,B],\,B]=0</math> oz. da operator <math>B\,</math> komutira s komutatorjem <math>[A,\,B]</math>.
 + 
 +Ker torej zadnja enačba velja za vsak n > 1 in ker velja za n=1, je torej dokaz zaključen. S pomočjo te enačbe bomo sedaj izračunali komutator <math>[A,\, f(B)]</math>, kjer predpostavimo, da se funkcija <math>f(B)\,</math> da razviti v Taylorjevo vrsto, torej:
 + 
 +<math>f(B)=\sum_n \frac{f^{(n)}(0)}{n!}B^n</math>
 + 
 +<math>[A,\, f(B)] = [A, \sum_n \frac{f^{(n)}(0)}{n!}B^n ] = \sum_n \frac{f^{(n)}(0)}{n!} [A, B^n] = \sum_n \frac{f^{(n)}(0)}{n!} \, n \, B^{n-1}\, [A, B] </math>
 + 
 +Vsoto lahko nesemo ven iz komutatorja, ker veljata zvezi <math>[A, B+C] = [A,B] \, + \, [A,C]</math> ter <math>[A, \lambda B] = \lambda \, [A,B]</math>
 + 
 +V zadnjem izrazu <math>\sum_n \frac{f^{(n)}(0)}{n!} \, n \, B^{n-1}</math> pa prepoznamo ravno odvod <math>f'(B)\,</math>. Rezultat je torej
 + 
 +<math>[A,\, f(B)] = f'(B)\,[A,B] </math>
 + 
 + 
 +''b)'' Naša naslednja naloga je bila pokazati, da velja <math>e^{A+B}=e^A e^B e^{-{\frac{1}{2}[A,B]}}</math>, če <math>[A,\,B]</math> komutira z operatorjema <math>A\,</math> in <math>B\,</math>, torej <math>[[A,B],\,A]=0</math> in <math> [[A,B],\,B]=0 </math>.
 + 
 +Naloge se lotimo tako, da vpeljemo funkcijo <math>f(\lambda ) = e^{\lambda A} \, e^{\lambda B}</math> in izračunamo odvod te funkcije:
 + 
 +<math>f'(\lambda ) = A\,e^{\lambda A} \, e^{\lambda B} + e^{\lambda A} B e^{\lambda B}</math>
 + 
 +Tu moramo seveda paziti, da operatorja <math>B\,</math> ne nesemo pred eksponent, saj ni nujno, da komutira z <math>A\,</math>. Zato si pomagamo z enačbo:
 + 
 +<math>[e^{\lambda A}, B] = - [B, e^{\lambda A}] = - \lambda \, e^{\lambda A} [B,A] = \lambda\, e^{\lambda A} [A,B]</math>
 + 
 +Tu smo uporabili rezultat iz prejšnjega dela 2. naloge, <math>[B,\, f(A)] = f'(A)\,[B,A] </math>. Seveda pa lahko že prvi komutator zapišemo kot <math>[e^{\lambda A}, B] = e^{\lambda A}\,B - B\,e^{\lambda A}</math>. Če to dvoje potem izenačimo, lahko izrazimo
 + 
 +<math>e^{\lambda A}\,B =B\,e^{\lambda A} + \lambda\, e^{\lambda A} [A,B] </math>
 + 
 +Sedaj se vrnemo nazaj na <math>f'\,(\lambda)</math>, ki ga lahko z novimi izrazi zapišemo kot
 + 
 +<math>f'(\lambda ) = A\,e^{\lambda A} \, e^{\lambda B} + (B\, e^{\lambda A} + \lambda e^{\lambda A} [A,B]) e^{\lambda B} = (A + B + \lambda [A,B]) e^{\lambda A} \, e^{\lambda B} = (A + B + \lambda [A,B]) f (\lambda) </math>
 + 
 +Tu pa komutator <math>[A,\,B]</math> lahko nesem pred eksponent, saj se da eksponent <math> e^{\lambda \, A} </math> zapisati v Taylorjevo vrsto, v kateri nastopajo potence operatorja <math>A\,</math>, s katerim po predpostavki komutator <math>[A,\,B]</math> komutira.
 + 
 +Dobimo diferencialno enačbo prvega reda, ki ima rešitev
 + 
 +<math>\ln( f(\lambda)) = (A+B)\lambda + [A,B] \frac{\lambda ^2}{2} + \ln C</math>
 + 
 +<math>f(\lambda) = C e^{(A+B)\lambda + [A,B] \frac{\lambda ^2}{2}}</math>
 + 
 +Konstanto C določimo, če postavimo <math>\lambda = 0 \,:\, f(0) = e^0\,e^0 = 1 = C</math>
 + 
 +Če postavimo za <math>\lambda = 1\,</math> pa dobimo željen rezultat:
 + 
 +<math>f(1) = e^{(A+B)}e^{[A,B] \frac{1}{2}} = e^A\,e^B</math>
 + 
 +Tukaj smo zopet uporabili dejstvo, da se da eksponentno funkcijo razviti v Taylorjevo vrsto, kjer se da vsoto po dveh indeksih pretvoriti na produkt dveh vsot. Zato lahko eksponent vsote pišemo kot produkt dveh eksponentov. Zadnjo enačbo se da zapisati tudi kot
 + 
 +<math>e^{A+B}=e^A e^B e^{-{\frac{1}{2}[A,B]}}</math>
 + 
 +kar smo pravzaprav hoteli pokazati.
-Najprej smo uporabili lastnost komutatorja <math> [A,BC] = B\,[A,C] + [A,B]\,C </math>,potem smo uporabili trditev <math>[A,B^n]=n\, B^{n-1}\,[A,B]</math>, ki jo dokazujemo, nazadnje pa smo uporabili še pogoj, da je <math>[[A,B],\,B]=0</math> oz. da operator B komutira s komutatorjem [A,B].+''c)'' Zadnja naloga je od nas zahtevala, da dokažemo Baker-Hausdorffovo identiteto: <math>e^A B e^{-A}=B+[A,B]+\frac{1}{2!}[A,[A,B]]+{\ldots}</math>.

Redakcija: 22:13, 12 marec 2007

Naloga

  1. S pomočjo principa nedoločenosti za lego in gibalno količino oceni energijo osnovnega stanja harmonskega oscilatorja (H=\frac{p^2}{2m}+\frac{kx^2}{2}).
  2. Dokaži naslednje komutatorske identitete:
    • Dokaži, da velja [A,Bn] = nBn − 1[A,B], če operatorja A in B zadoščata pogoju [[A,B],B] = 0. Uporabi rezultat za izračun komutatorja [A,f(B)]. Predpostavi, da se funkcija f da razviti v Taylorjevo vrsto.
    • Pokaži, da velja e^{A+B}=e^A e^B e^{-{\frac{1}{2}[A,B]}}, če [A,B] komutira z operatorjema A in B.
    • Dokaži Baker-Hausdorffovo identiteto: e^A B e^{-A}=B+[A,B]+\frac{1}{2!}[A,[A,B]]+{\ldots}.

Rešitev

1. del:

Energija osnovnega stanja harmonskega oscilatorja seveda ni enaka nič (kot bi to morda intuitivno pričakovali), saj bi s tem kršili Heisenbergov princip nedoločenosti, ki pravi, da delca ne moremo fiksirati točno na sredino potenciala in ga pustiti tam mirovati.

Slika:Skica-ho.gif

Da bi izračunali, kolikšna je minimalna dovoljena energija E\,_0, da še ne kršimo Heisenbergovega principa nedoločenosti, moramo najprej izpisati operator polne energije harmonskega oscilatorja:

\langle \psi | H | \psi \rangle = \langle H \rangle = E\,_0 = \frac{\langle p^2 \rangle}{2m} + \frac{1}{2}\,k\,x^2


Ker je potencial simetričen okrog x = 0, je pričakovana vrednost koordinate x: \langle x \rangle = 0

Iz tega sledi, da je tudi pričakovana vrednost gibalne količine \langle p \rangle = m \, \frac{d\langle x \rangle}{dt} = 0

Sedaj se spomnimo zvez (\delta x)^2 = \langle x^2 \rangle - (\langle x \rangle)^2 oziroma (\delta p)^2 = \langle p^2 \rangle - (\langle p \rangle)^2, iz katerih zaradi zgornjih pričakovanih vrednosti sledi:

\delta x = \sqrt{\langle x^2 \rangle}

\delta p =\sqrt{\langle p^2 \rangle}

E\,_0 lahko sedaj zapišemo kot

E\,_0 = \frac{(\delta p)^2}{2m} + \frac{1}{2} \, k \, (\delta x)^2

Ob upoštevanju Heisenbergovega principa nedoločenosti \delta x \, \delta p \geq  \frac{\hbar}{2} pa sledi

E\,_0 \geq \frac{\hbar ^2}{8\,m\, (\delta x)^2} + \frac{1}{2} \, k \, (\delta x)^2

Ker iščemo minimum energije, moramo torej odvod E\,_0 po \delta \,x izenačiti z 0:

\frac{\partial E\,_0}{\partial (\delta x)} = 0 = - \frac{\hbar ^2}{4\,m\, (\delta x)_{min}^3} + k \, (\delta x)_{min}

kjer indeks min označuje minimalno nedoločenost lege.

Iz prejšnje enačbe dobimo (\delta x)_{min} = \sqrt[4]{\frac{\hbar^2}{4\,k\,m}}, torej mora biti energija osnovnega stanja

E_0 \geq \frac{\hbar ^2}{8\,m} \sqrt{\frac{4\,k\,m}{\hbar^2}} + \frac{1}{2} \, k \, \sqrt{\frac{\hbar^2}{4\,k\,m}}  = \frac{\hbar}{4} \sqrt{\frac{k}{m}} +  \frac{\hbar}{4} \sqrt{\frac{k}{m}}= \frac{\hbar}{2} \sqrt{\frac{k}{m}}

V zadnjem členu prepoznamo še frekvenco harmonskega oscilatorja \omega = \sqrt{\frac{k}{m}} in končni rezultat za minimalno energijo osnovnega stanja harmonskega oscilatorja je

E_0 \geq \frac{1}{2} \hbar \omega


2. del:

a) Dokazati hočemo, da velja [A,B^n]=n\, B^{n-1}\,[A,B], če operatorja A in B zadoščata pogoju [[A,B],\,B]=0. Dokaza se lotimo s principom popolne indukcije. Najprej preverimo, če izraz velja za n=1, potem pa predpostavimo, da velja za n-1 in iz tega pokažemo, da velja tudi za n:

n = 1: \quad [A,B^1] = [A,B]

n > 1: \quad [A, B^n] = [A, B\, B^{n-1}]= B[A,B^{n-1}] + [A,B]\,B^{n-1} =

= B\,(n-1)\,B^{n-2}\,[A,B] + [A,B]\,B^{n-1} =

= B^{n-1}\,[A,B] (n-1 + 1) = n\,B^{n-1}\,[A,B]

V prvi vrstici smo uporabili lastnost komutatorja [A,BC] = B\,[A,C] + [A,B]\,C, v drugi vrstici smo uporabili trditev [A,B^n]=n\, B^{n-1}\,[A,B], ki jo dokazujemo, nazadnje pa smo uporabili še pogoj, da je [[A,B],\,B]=0 oz. da operator B\, komutira s komutatorjem [A,\,B].

Ker torej zadnja enačba velja za vsak n > 1 in ker velja za n=1, je torej dokaz zaključen. S pomočjo te enačbe bomo sedaj izračunali komutator [A,\, f(B)], kjer predpostavimo, da se funkcija f(B)\, da razviti v Taylorjevo vrsto, torej:

f(B)=\sum_n \frac{f^{(n)}(0)}{n!}B^n

[A,\, f(B)] = [A, \sum_n \frac{f^{(n)}(0)}{n!}B^n ] = \sum_n \frac{f^{(n)}(0)}{n!} [A, B^n] = \sum_n \frac{f^{(n)}(0)}{n!} \, n \, B^{n-1}\, [A, B]

Vsoto lahko nesemo ven iz komutatorja, ker veljata zvezi [A, B+C] = [A,B] \, + \, [A,C] ter [A, \lambda B] = \lambda \, [A,B]

V zadnjem izrazu \sum_n \frac{f^{(n)}(0)}{n!} \, n \, B^{n-1} pa prepoznamo ravno odvod f'(B)\,. Rezultat je torej

[A,\, f(B)] = f'(B)\,[A,B]


b) Naša naslednja naloga je bila pokazati, da velja e^{A+B}=e^A e^B e^{-{\frac{1}{2}[A,B]}}, če [A,\,B] komutira z operatorjema A\, in B\,, torej [[A,B],\,A]=0 in [[A,B],\,B]=0.

Naloge se lotimo tako, da vpeljemo funkcijo f(\lambda ) = e^{\lambda A} \, e^{\lambda B} in izračunamo odvod te funkcije:

f'(\lambda ) = A\,e^{\lambda A} \, e^{\lambda B} + e^{\lambda A} B e^{\lambda B}

Tu moramo seveda paziti, da operatorja B\, ne nesemo pred eksponent, saj ni nujno, da komutira z A\,. Zato si pomagamo z enačbo:

[e^{\lambda A}, B] = - [B, e^{\lambda A}] = - \lambda \, e^{\lambda A} [B,A] = \lambda\, e^{\lambda A} [A,B]

Tu smo uporabili rezultat iz prejšnjega dela 2. naloge, [B,\, f(A)] = f'(A)\,[B,A]. Seveda pa lahko že prvi komutator zapišemo kot [e^{\lambda A}, B] = e^{\lambda A}\,B - B\,e^{\lambda A}. Če to dvoje potem izenačimo, lahko izrazimo

e^{\lambda A}\,B =B\,e^{\lambda A} + \lambda\, e^{\lambda A} [A,B]

Sedaj se vrnemo nazaj na f'\,(\lambda), ki ga lahko z novimi izrazi zapišemo kot

f'(\lambda ) = A\,e^{\lambda A} \, e^{\lambda B} + (B\, e^{\lambda A} + \lambda e^{\lambda A} [A,B]) e^{\lambda B} = (A + B + \lambda [A,B]) e^{\lambda A} \, e^{\lambda B} = (A + B + \lambda [A,B]) f (\lambda)

Tu pa komutator [A,\,B] lahko nesem pred eksponent, saj se da eksponent e^{\lambda \, A} zapisati v Taylorjevo vrsto, v kateri nastopajo potence operatorja A\,, s katerim po predpostavki komutator [A,\,B] komutira.

Dobimo diferencialno enačbo prvega reda, ki ima rešitev

\ln( f(\lambda)) = (A+B)\lambda + [A,B] \frac{\lambda ^2}{2} + \ln C

f(\lambda) = C e^{(A+B)\lambda + [A,B] \frac{\lambda ^2}{2}}

Konstanto C določimo, če postavimo \lambda =  0 \,:\, f(0) = e^0\,e^0 = 1 = C

Če postavimo za \lambda = 1\, pa dobimo željen rezultat:

f(1) = e^{(A+B)}e^{[A,B] \frac{1}{2}} = e^A\,e^B

Tukaj smo zopet uporabili dejstvo, da se da eksponentno funkcijo razviti v Taylorjevo vrsto, kjer se da vsoto po dveh indeksih pretvoriti na produkt dveh vsot. Zato lahko eksponent vsote pišemo kot produkt dveh eksponentov. Zadnjo enačbo se da zapisati tudi kot

e^{A+B}=e^A e^B e^{-{\frac{1}{2}[A,B]}}

kar smo pravzaprav hoteli pokazati.

c) Zadnja naloga je od nas zahtevala, da dokažemo Baker-Hausdorffovo identiteto: e^A B e^{-A}=B+[A,B]+\frac{1}{2!}[A,[A,B]]+{\ldots}.