Koherentna stanja harmonskega oscilatorja I

Iz Kvantna Mehanika I 2006 - 2007

(Primerjava redakcij)
Skoči na: navigacija, iskanje
Redakcija: 11:18, 26 marec 2007 (spremeni)
WikiSysop (Pogovor | prispevki)
(New page: == Naloga == == Rešitev ==)
← Pojdi na prejšnje urejanje
Trenutna redakcija (20:36, 24 maj 2007) (spremeni) (undo)
193.95.248.110 (Pogovor)

 
( not shown.)
Vrstica 1: Vrstica 1:
== Naloga == == Naloga ==
 +
 +Za delec v koherentnem stanju <math>a\left|z\right\rangle=z\left|z\right\rangle</math> harmonskega oscilatorja <math>H=\hbar\omega\left(a^\dagger a+\frac{1}{2}\right)</math> izračunaj nedoločenosti položaja, gibalne količine in energije.
== Rešitev == == Rešitev ==
 +
 +====Nedoločenost koordinate====
 +
 +Lego opišemo z
 +
 +<math>x=\frac{x_{0}}{\sqrt{2}}(a+a^\dagger)</math>, kjer je
 +
 +<math>x_{0}=\sqrt{\frac{\hbar}{m\omega}}</math>.
 +
 +Povprečna vrednost lege:
 +
 +<math>\langle x\rangle=\frac{x_{0}}{\sqrt{2}}\langle a+a^\dagger\rangle=\frac{x_{0}}{\sqrt{2}}2 Re \langle a\rangle=\sqrt{2}x_{0}Re(z) </math>,
 +
 +zadnji korak pojasni zveza:
 +
 +<math> \langle a \rangle= \langle z |a|z\rangle=\langle z|zz \rangle=z\langle z|z \rangle=z</math>.
 +
 +Povprečna vrednost kvadrata lege:
 +
 +<math>\langle x^2\rangle = \frac{x_{0}^2}{2}\langle (a+a^\dagger)^2\rangle=
 + \frac{x_{0}^2}{2}\langle a^2+aa^\dagger+a^\dagger a + a^{\dagger 2}\rangle=</math>
 +
 +<math>\frac{x_{0}^{2}}{2}\langle a^2+1+2a^\dagger a+a^{\dagger 2}\rangle=
 +\frac{x_{0}^{2}}{2}(z^2+1+2z^*z+z^{*2})=
 +\frac{x_{0}^{2}}{2}((z^*+z)^2+1)=
 +\frac{x_{0}^{2}}{2}(4Re(z)^2+1)</math>
 +
 +Drugi člen izrazimo z zvezo <math>aa^\dagger=1+a^\dagger a</math>,
 +tako da je v produktu anihilacijski operator pred kreacijskim.
 +
 +Ker so koherentna stanja lastna stanja anihilacijskega operatorja jih lahko izrazimo iz
 +anihilacijskega operatorja preko:
 +
 +<math>\langle z|a^{\dagger m}a^{n}|z\rangle = \langle a^m z|z^n|z\rangle =
 +\langle z^m z|z^n|z \rangle =z^{*m}z^n\langle z|z \rangle = z^{*m}z^n</math>
 +
 +
 +Nedoločenost lege je:
 +<math>\delta x= \sqrt{\langle x^2\rangle -\langle x\rangle^2}=\frac{x_{0}}{\sqrt{2}}</math>
 +
 +
 +====Nedoločenost gibalne količine====
 +
 +Na podoben način dobimo nedoločenost gibalne količine.
 +
 +Operator gibalne količine <math>p=\frac{p_{0}}{i \sqrt{2}}(a-a^\dagger) </math>, kjer je <math> p_{0}=\frac{\hbar}{x_{0}}</math>
 +
 +Povprečna vrednost gibalne količine:
 +
 +<math> \langle p\rangle =\frac{p_{0}}{i \sqrt{2}} \langle a-a^\dagger \rangle=\frac{p_{0}}{i \sqrt{2}} \langle z-z^* \rangle=
 +\frac{p_{0}}{i \sqrt{2}}i 2Im(z)=p_{0} \sqrt{2}Im(z).</math>
 +
 +Povprečje kvadrata gibalne količine:
 +
 +<math> \langle p^2\rangle =-\frac{p_{0}^{2}}{2} \langle (a-a^\dagger)^2 \rangle=
 +-\frac{p_{0}^{2}}{2}\langle a^2 \underbrace{-aa^\dagger-a^\dagger a}_{-1-2a^\dagger a}+a^{\dagger 2} \rangle=
 +-\frac{p_{0}^{2}}{2}\langle z^2 - 2z^*z+z^{*2}-1 \rangle=
 +-\frac{p_{0}^{2}}{2}\langle (z-z^{*})^2-1\rangle =
 +\frac{p_{0}^{2}}{2}(4Im(z)^2+1)</math>
 +
 +Nedoločenost gibalne količine je:
 +<math>\delta p= \sqrt{\langle p^2\rangle -\langle p\rangle^2}=\frac{p_{0}}{\sqrt{2}}</math>
 +
 +Heisenbergovo načelo nedoločljivosti pokaže, da pri koherentih stanjih velja enakost zveze:
 +
 +<math>\delta p\delta x = \frac{x_{0}p_{0}}{2}=\frac{\hbar}{2}</math>
 +
 +
 +====Nedoločenost energije====
 +
 +
 +Operator energije
 +<math> H = \hbar \omega (a^\dagger a + \frac{1}{2})</math>
 +
 +Povprečna vrednost energije
 +
 +<math> \langle H\rangle =\hbar \omega \langle a^\dagger a +\frac{1}{2} \rangle=
 +\hbar \omega \langle z^* z +\frac{1}{2} \rangle=
 +\hbar \omega (|z|^2 +\frac{1}{2})</math>
 +
 +Povprečna vrednost kvadrata energije:
 +
 +<math>\langle H^2\rangle = (\hbar \omega)^2 \langle (a^\dagger a +\frac{1}{2})^2 \rangle=
 +(\hbar \omega)^2 \langle (a^\dagger a)^2 + a^\dagger a +\frac{1}{4}\rangle=
 +(\hbar \omega)^2 \langle \underbrace{a^\dagger a a^\dagger a}_{a^\dagger(1+ a^\dagger a )a=a^\dagger a + a^{\dagger 2}a^2}+ a^\dagger a +\frac{1}{4}\rangle=
 +
 +(\hbar \omega)^2 (2|z|^2 + |z|^4 + \frac{1}{4} ) </math>
 +
 +Nedoločenost energije je:
 +
 +<math>\delta H= \sqrt{\langle H^2\rangle -\langle H\rangle^2}=\hbar \omega |z|</math>

Trenutna redakcija

Vsebina

[spremeni] Naloga

Za delec v koherentnem stanju a\left|z\right\rangle=z\left|z\right\rangle harmonskega oscilatorja H=\hbar\omega\left(a^\dagger a+\frac{1}{2}\right) izračunaj nedoločenosti položaja, gibalne količine in energije.

[spremeni] Rešitev

[spremeni] Nedoločenost koordinate

Lego opišemo z

x=\frac{x_{0}}{\sqrt{2}}(a+a^\dagger), kjer je

x_{0}=\sqrt{\frac{\hbar}{m\omega}}.

Povprečna vrednost lege:

\langle x\rangle=\frac{x_{0}}{\sqrt{2}}\langle a+a^\dagger\rangle=\frac{x_{0}}{\sqrt{2}}2 Re \langle a\rangle=\sqrt{2}x_{0}Re(z),

zadnji korak pojasni zveza:

\langle a \rangle= \langle z |a|z\rangle=\langle z|zz \rangle=z\langle z|z \rangle=z.

Povprečna vrednost kvadrata lege:

\langle x^2\rangle = \frac{x_{0}^2}{2}\langle (a+a^\dagger)^2\rangle=  \frac{x_{0}^2}{2}\langle a^2+aa^\dagger+a^\dagger a + a^{\dagger 2}\rangle=

\frac{x_{0}^{2}}{2}\langle a^2+1+2a^\dagger a+a^{\dagger 2}\rangle= \frac{x_{0}^{2}}{2}(z^2+1+2z^*z+z^{*2})= \frac{x_{0}^{2}}{2}((z^*+z)^2+1)= \frac{x_{0}^{2}}{2}(4Re(z)^2+1)

Drugi člen izrazimo z zvezo aa^\dagger=1+a^\dagger a, tako da je v produktu anihilacijski operator pred kreacijskim.

Ker so koherentna stanja lastna stanja anihilacijskega operatorja jih lahko izrazimo iz anihilacijskega operatorja preko:

\langle z|a^{\dagger m}a^{n}|z\rangle = \langle a^m z|z^n|z\rangle =  \langle z^m z|z^n|z \rangle =z^{*m}z^n\langle z|z \rangle = z^{*m}z^n


Nedoločenost lege je: \delta x= \sqrt{\langle x^2\rangle -\langle x\rangle^2}=\frac{x_{0}}{\sqrt{2}}


[spremeni] Nedoločenost gibalne količine

Na podoben način dobimo nedoločenost gibalne količine.

Operator gibalne količine p=\frac{p_{0}}{i \sqrt{2}}(a-a^\dagger), kjer je p_{0}=\frac{\hbar}{x_{0}}

Povprečna vrednost gibalne količine:

\langle p\rangle =\frac{p_{0}}{i \sqrt{2}} \langle a-a^\dagger \rangle=\frac{p_{0}}{i \sqrt{2}} \langle z-z^* \rangle= \frac{p_{0}}{i \sqrt{2}}i 2Im(z)=p_{0} \sqrt{2}Im(z).

Povprečje kvadrata gibalne količine:

\langle p^2\rangle =-\frac{p_{0}^{2}}{2} \langle (a-a^\dagger)^2 \rangle= -\frac{p_{0}^{2}}{2}\langle a^2 \underbrace{-aa^\dagger-a^\dagger a}_{-1-2a^\dagger a}+a^{\dagger 2} \rangle= -\frac{p_{0}^{2}}{2}\langle z^2 - 2z^*z+z^{*2}-1 \rangle= -\frac{p_{0}^{2}}{2}\langle (z-z^{*})^2-1\rangle = \frac{p_{0}^{2}}{2}(4Im(z)^2+1)

Nedoločenost gibalne količine je: \delta p= \sqrt{\langle p^2\rangle -\langle p\rangle^2}=\frac{p_{0}}{\sqrt{2}}

Heisenbergovo načelo nedoločljivosti pokaže, da pri koherentih stanjih velja enakost zveze:

\delta p\delta x = \frac{x_{0}p_{0}}{2}=\frac{\hbar}{2}


[spremeni] Nedoločenost energije

Operator energije H = \hbar \omega (a^\dagger a + \frac{1}{2})

Povprečna vrednost energije

\langle H\rangle =\hbar \omega \langle a^\dagger a +\frac{1}{2} \rangle= \hbar \omega \langle z^* z +\frac{1}{2} \rangle= \hbar \omega (|z|^2 +\frac{1}{2})

Povprečna vrednost kvadrata energije:

\langle H^2\rangle = (\hbar \omega)^2 \langle (a^\dagger a +\frac{1}{2})^2 \rangle= (\hbar \omega)^2 \langle (a^\dagger a)^2 + a^\dagger a  +\frac{1}{4}\rangle= (\hbar \omega)^2 \langle \underbrace{a^\dagger a a^\dagger a}_{a^\dagger(1+ a^\dagger a )a=a^\dagger a + a^{\dagger 2}a^2}+ a^\dagger a  +\frac{1}{4}\rangle=  (\hbar \omega)^2 (2|z|^2 + |z|^4 + \frac{1}{4} )

Nedoločenost energije je:

\delta H= \sqrt{\langle H^2\rangle -\langle H\rangle^2}=\hbar \omega |z|