Koherentna stanja harmonskega oscilatorja I
Iz Kvantna Mehanika I 2006 - 2007
Vsebina |
[spremeni] Naloga
Za delec v koherentnem stanju harmonskega oscilatorja izračunaj nedoločenosti položaja, gibalne količine in energije.
[spremeni] Rešitev
[spremeni] Nedoločenost koordinate
Lego opišemo z
, kjer je
.
Povprečna vrednost lege:
,
zadnji korak pojasni zveza:
.
Povprečna vrednost kvadrata lege:
Drugi člen izrazimo z zvezo , tako da je v produktu anihilacijski operator pred kreacijskim.
Ker so koherentna stanja lastna stanja anihilacijskega operatorja jih lahko izrazimo iz anihilacijskega operatorja preko:
Nedoločenost lege je:
[spremeni] Nedoločenost gibalne količine
Na podoben način dobimo nedoločenost gibalne količine.
Operator gibalne količine , kjer je
Povprečna vrednost gibalne količine:
Povprečje kvadrata gibalne količine:
Nedoločenost gibalne količine je:
Heisenbergovo načelo nedoločljivosti pokaže, da pri koherentih stanjih velja enakost zveze:
[spremeni] Nedoločenost energije
Operator energije
Povprečna vrednost energije
Povprečna vrednost kvadrata energije:
Nedoločenost energije je: