Harmonski oscilator I
Iz Kvantna Mehanika I 2006 - 2007
Vsebina |
Naloga
- Kako se s časom spreminjata pričakovani vrednosti operatorjev x in x2 v stanju harmonskega oscilatorja ?
- Izračunaj časovno odvisnost anihilacijskega operatorja in rezultat uporabi za izračun količin iz naloge 1.
Rešitev
Formalizem harmonskega oscilatorja
K reševanju problema harmonskega oscilatorja navadno pristopimo z uporabo/uvedbo t.i. "lestvičnih" ("ladder") operatorjev, s čimer, ob upoštevanju Diracive pisave, hitreje pridemo do vseh pomembnejših rezultatov (brez zamudnega reševanja diferencialnih enačb običajnega kvantnomehanskega formalizma).
Kreacijski in anihilacijski operator
Uvedemo anihilacijski operator a in njemu adjungiran kreacijski operator a†:
in
kjer sta:
in , pri čemer je frekvenca harmonskega oscilatorja:
Lastnosti
Kreacijski operator torej zvišuje stanje harmonskega oscilatorja, medtem, ko nam anihilacijski operator stanje znižuje. Pri delovanju anihilacijskega operatorja na lastno valovno funkcijo osnovenega stanja, pa jo ta izniči.
Hamiltonov operator
S tako definiranima operatorjema na novo zapišemo še Hamiltonov operator:
Lastne energije harmonskega oscilatorja v stanju n so:
, kjer med n - to lastno energijo in Hamiltonovim operatorjem velja zveza:
Operatorja kraja in gibalne količine
Operatorja kraja in gibalne količine , sta sebi adjungirana oz. hermitska, na novo pa ju z anihilacijskim in kreacijskim operatorjem zapišemo v obliki:
in
Časovna odvisnost pričakovane vrednosti x in njegovega kvadrata
Nalogo bomo reševali na dva načina, in sicer:
- V prvem primeru bomo računali pričakovano vrednost ustreznega operatorja tako, da bomo v času razvili valovno funkcijo in nato z njo delovali na operator. Za splošen operator torej računamo takole:
- V drugem primeru bomo računali pričakovano vrednost ustreznega operatorja tako, da ga bomo najprej razvili v času in nato nanj delovali z stacionarno valovno funkcijo. Za splošen operator torej računamo takole:
Časovni razvoj valovne funkcije
Ob t=0 imamo harmonski oscilator v stanju z valovno funkcijo:
Časovni razvoj valovne funkcije je:
Uporabimo sedaj časovni razvoj valovne funkcije za izračun in . Pri tem bomo za pisali kar .
Časovna odvisnost pričakovane vrednosti x
- VRSTICA: Tu smo najprej namesto operatorja kraja vstavili njegov zapis z kreacijskim in anihilacijskim operatorjem, nato pa upoštevali distributivnost skalarnega produkta v Hilbertovem prostoru. Nazadnje smo upoštevali še, da je kreacijski operator adjungiran anihilacijskemu, od koder sledi, da je njegova pričakovana vrednost enaka konjugirani pričakovani vrednosti anihilacijskega operatorja.
- VRSTICA: Bra in ket razpišemo z baznimi valovnimi funkcijami. Nato z anihilacijskim operatorjem delujemo na ket, kjer upoštevamo in . Nato upoštevamo še . Ostanemo s konstantami in realnim delom časovnega razvoja valovne funkcije.
Časovna odvisnost pričakovane vrednosti kvadrata x
- VRSTICA: Najprej namesto kvadrata operatorja kraja, operator zapišemo z uporabo kreacijskega in anihilacijskega operatorja, nato izraz razpišemo.
- VRSTICA:
- Tu skalarni produkt najprej razbijemo na dva dela:
- Velja: , saj velja in se zato imaginarni deli odštejejo.
- Velja: , kjer smo uporabili:
- Nato upoštevamo, da velja:
- , ker velja , saj z anihilacijskim operatorjem dvakrat delujemo na valovno funkcijo oblike
- , kjer velja: , saj je valovna funkcija ψ normirana. V drugem delu velja: , tako, da dobimo , kjer upoštevamo še
- Tu skalarni produkt najprej razbijemo na dva dela:
Časovna odvisnost anihilacijskega operatorja
Časovni razvoj in Hamiltonov operator
Pokažimo najprej, da valovno funkcijo, s pomočjo Hamiltonovega operatorja, razvijemo v času kot:
Začnemo z izrazom , ki ga razvijemo v času z uporabo gornjega izraza:
V računu smo eksponentni del najprej razvili v potenčno vrsto, upoštevali zvezo , nato pa vrsto spet izrazili v funkcijski obliki.
Izračun časovne odvisnosti
Podobno, kot smo definirali , definiramo :
Izraz odvajamo in dobimo:
V računu smo upoštevali, da operatorja in komutirata, tako, da velja:
Preden nadaljujemo z izračunom, si za poljubna operatorja A in B poglejmo še nekaj lastnosti časovnega razvoja operatorjev:
- Pokažimo, da velja zveza:
Nadaljujmo z izračunom časovne odvisnosti anihilacijskega operatorja:
- Velja:
Od tod dobimo diferencialno enačbo za anihilacijski operator, ki je oblike:
Rešitev enačbe je , kjer upoštevamo še: .
Časovni razvoj anihilacijskega operatorja je torej:
.
Časovna odvisnost pričakovane vrednosti x
Izračunajmo sedaj pričakovano vrednost koordinate še s časovnim razvojem anihilatorskega operatorja. Iz prvega izračuna vemo, da je .
Časovna odvisnost pričakovane vrednosti kvadrata x
Izračunajmo s časovnim razvojem anihilatorskega operatorja še pričakovano vrednost kvadrata koordinate . Iz prvega izračuna vemo, da je .
Upoštevamo naslenje zveze:
- Ko v enačbo vstavimo , z enakimi argumenti, kot v prvem primeru velja: .
- Ker je valovna funkcija ψ normirana, je .
- Za adjungirane operatorje velja: . Od tod dobimo iz časovnega razvoja anihilacijskega operatorja kreacijskega: .
V enačbo vstavimo časovni razvoj kreacijskega operatorja, upoštevamo ostali zvezi in zveze, ki smo jih uporabili v prvem primeru ter dobimo:
.