Harmonski oscilator I

Iz Kvantna Mehanika I 2006 - 2007

(Primerjava redakcij)
Skoči na: navigacija, iskanje
Redakcija: 22:00, 21 marec 2007 (spremeni)
193.2.191.7 (Pogovor)

← Pojdi na prejšnje urejanje
Redakcija: 22:06, 21 marec 2007 (spremeni) (undo)
193.2.191.7 (Pogovor)

Novejše urejanje →
Vrstica 36: Vrstica 36:
Lastne energije harmonskega oscilatorja v stanju <FONT SIZE="2"><i>n</i></FONT> so: Lastne energije harmonskega oscilatorja v stanju <FONT SIZE="2"><i>n</i></FONT> so:
-<math>E_{n} = \hbar \omega \left( n + \frac{1}{2} \right)</math>&nbsp; , kjer je <math>E_{n}\left| n \right> = H\left| n \right></math>.+<math>E_{n} = \hbar \omega \left( n + \frac{1}{2} \right)</math>&nbsp; , kjer med <FONT SIZE="2"><i>n</i></FONT> - to lastno energijo in Hamiltonovim operatorjem velja zveza: <math>E_{n} | n \rangle = H | n \rangle</math>.

Redakcija: 22:06, 21 marec 2007

Vsebina

Naloga

  1. Kako se s časom spreminjata pričakovani vrednosti operatorjev x in x2 v stanju \left|\psi,0\right\rangle=\frac{1}{\sqrt{2}}\left(\left|0\right\rangle+\left|1\right\rangle\right) harmonskega oscilatorja H=\frac{p^2}{2m}+\frac{kx^2}{2}?
  2. Izračunaj časovno odvisnost anihilacijskega operatorja a(t)=e^{\frac{iHt}{\hbar}}ae^{-\frac{iHt}{\hbar}} in rezultat uporabi za izračun količin iz naloge 1.

Rešitev

Formalizem harmonskega oscilatorja

K reševanju problema harmonskega oscilatorja navadno pristopimo z uporabo/uvedbo t.i. "lestvičnih" ("ladder") operatorjev, s čimer, ob upoštevanju Diracive pisave, hitreje pridemo do vseh pomembnejših rezultatov (brez zamudnega reševanja diferencialnih enačb običajnega kvantnomehanskega formalizma).


Kreacijski in anihilacijski operator

Uvedemo anihilacijski operator a in njemu adjungiran kreacijski operator a:

a = \frac{1}{\sqrt{2}}\left( \frac{\widehat{x}}{x_{0}}+i \frac{\widehat{p}}{p_{0}} \right)       in       a^{\dagger} = \frac{1}{\sqrt{2}}\left( \frac{\widehat{x}}{x_{0}}-i \frac{\widehat{p}}{p_{0}} \right),

kjer sta:

x_{0} = \sqrt{\frac{\hbar}{m \omega}}       in       p_{0} = \frac{\hbar}{x_{0}}.

Pri tem je frekvenca harmonskega oscilatorja: \omega = \sqrt{\frac{k}{m}}.

Komutator med anihilacijskim in kreacijskim operatorjem je:

\left[ a,a^{\dagger} \right] = 1.


Hamiltonov operator

S tako definiranima operatorjema na novo zapišemo še Hamiltonov operator:

H = \frac{\hat{p}^{2}}{2m}+\frac{1}{2}k\hat{x}^{2}=\hbar \omega \left( a^{\dagger}a+\frac{1}{2} \right).

Lastne energije harmonskega oscilatorja v stanju n so:

E_{n} = \hbar \omega \left( n + \frac{1}{2} \right)  , kjer med n - to lastno energijo in Hamiltonovim operatorjem velja zveza: E_{n} | n \rangle = H | n \rangle.