Dvodimenzionalni harmonski oscilator

Iz Kvantna Mehanika I 2006 - 2007

(Primerjava redakcij)
Skoči na: navigacija, iskanje
Redakcija: 16:08, 24 maj 2007 (spremeni)
193.77.91.65 (Pogovor)
(test)
← Pojdi na prejšnje urejanje
Redakcija: 16:09, 24 maj 2007 (spremeni) (undo)
193.77.91.65 (Pogovor)
(Replacing page with '== Naloga == Obravnavaj lastna stanja dvodimenzionalnega harmonskega oscilatorja <math>H=\frac{\mathbf{p^2}}{2m}+\frac{1}{2}a_x x^2+\frac{1}{2}a_y y^2 </math>. V primeru, ...')
Novejše urejanje →
Vrstica 10: Vrstica 10:
== Rešitev == == Rešitev ==
- 
- 
-\subsubsection{\textbf{Naloga:}\ } 
- 
-Obravnavaj Lastna stanja dvodimenzionalnega harmonskega oscilatorja. 
- 
-\[ 
-H=\frac{\mathbf{p}^{2}}{2m}+\frac{1}{2}a_{x}x^{2}+\frac{1}{2}a_{y}y^{2}  
-\] 
- 
-V primeru ko je $a_{x}=\allowbreak a_{y}$ poi\v{s}\v{c}i taka lastna stanja, 
-ki so hkrati tudi lastna stanja operatorja vrtilne koli\v{c}ine okoli osi 
-z:\  
-\[ 
-L_{z}=-i\hbar \frac{\partial }{\partial z}  
-\] 
- 
-\subsubsection{\protect\bigskip Lastna stanja vsote neodvisnih Hamiltonovih 
-operatorjev} 
- 
-V splo\v{s}nem velja, da \v{c}e lahko hamiltonian razbijemo na vsoto 
-neodvisnih \v{c}lenov $H_{i}$, je lastna funkcija takega hamiltoniana oblike% 
-\[ 
-\psi =\prod\limits_{i=1}^{n}\psi _{i}  
-\]% 
-kjer je $\psi _{i}$ lastna funkcija operatorja $H_{i}$, lastna vrednost pa 
-je vsota lastnih vrednosti za posamezne $H_{i}$. To vidimo iz% 
-\[ 
-\left( H_{1}+H_{2}+...+H_{n}\right) \psi _{1}\psi _{2}...\psi 
-_{n}=(E_{1}+E_{2}+...+E_{n})\psi _{1}\psi _{2}...\psi _{n}  
-\]% 
-\[ 
-H_{1}\psi _{1}\psi _{2}...\psi _{n}+H_{2}\psi _{1}\psi _{2}...\psi 
-_{n}+...+H_{n}\psi _{1}\psi _{2}...\psi _{n}=E_{1}\psi _{1}\psi _{2}...\psi 
-_{n}+E_{2}\psi _{1}\psi _{2}...\psi _{n}+...+E_{n}\psi _{1}\psi _{2}...\psi 
-_{n}  
-\]% 
-Vidimo, da je $H_{i}\psi _{1}\psi _{2}...\psi _{i}...\psi _{n}=E_{i}\psi 
-_{1}\psi _{2}...\psi _{i}...\psi _{n}$, saj operator $H_{i}$ deluje le na 
-funkcijo $\psi _{i}$, vse ostale pa se iz izraza okraj\v{s}ajo. 
- 
-\subsubsection{\protect\bigskip Lastna stanja 2D harmoni\v{c}nega oscilatorja% 
-} 
- 
-Hamiltonian za 2D harmoni\v{c}ni oscilator zapi\v{s}emo v komponentah:% 
-\[ 
-H=\frac{p_{x}^{2}}{2m}+\frac{p_{y}^{2}}{2m}+\frac{1}{2}a_{x}x^{2}+\frac{1}{2}% 
-a_{y}y^{2}=H_{x}+H_{y}  
-\]% 
-Vidimo, da ga lahko razstavimo v vsoto hamiltonianov za posamezna 
-oscilatorja, torej bo lastno stanje enako produktu lastnih stanj 
-hamiltonovega operatorja za posamezno smer. 
- 
-Najprej si poglejmo poseben primer: 
- 
-\paragraph{$a_{x}=0,a_{y}>0$} 
- 
-V smeri x torej nimamo vezanega stanja, re\v{s}itev predstavlja ravni val% 
-\[ 
-\psi _{x}=e^{ik_{x}x}={}_{x}\langle x|k_{x}\rangle _{x}  
-\]% 
-kjer je $k_{x}=\frac{1}{\hbar }\sqrt{2mE_{x}}$, v smeri y pa imamo% 
-\[ 
-\psi _{y}={}_{y}\langle y|n_{y}\rangle _{y}  
-\]% 
-kjer je $|n_{y}\rangle _{y}=\frac{a_{y}^{+n}}{\sqrt{n!}}|0\rangle _{y}$ n-to 
-lastno stanje enodimenzionalnega harmoni\v{c}nega oscilatorja. Celotna 
-valovna funkcija je torej produkt, ki ga ozna\v{c}imo:% 
-\[ 
-|k_{x}n_{y}\rangle =|k_{x}\rangle |n_{y}\rangle ,  
-\]% 
-lastno energijo pa zapi\v{s}emo kot% 
-\[ 
-E=E_{x}+E_{y}=\frac{(\hbar k_{x})^{2}}{2m}+\hbar \omega _{y}\left( n_{y}+% 
-\frac{1}{2}\right)  
-\]% 
-kjer je $\omega _{y}=\sqrt{\frac{a_{y}}{m}}.$ 
- 
-\paragraph{$a_{x}>0,a_{y}>0$} 
- 
-V tem primeru imamo prava vezana stanja, ki jih zapi\v{s}emo kot% 
-\[ 
-|n_{x}n_{y}\rangle =|n_{x}\rangle _{x}|n_{y}\rangle _{y}  
-\]% 
-z lastno energijo  
-\[ 
-E=\hbar \omega _{x}\left( n_{x}+\frac{1}{2}\right) +\hbar \omega _{y}\left( 
-n_{y}+\frac{1}{2}\right)  
-\] 
- 
-\paragraph{$\protect\bigskip a_{x}=a_{y}=a$} 
- 
-V primeru, da imamo $a_{x}=a_{y}=a$, ima potencial rotacijsko simetri\v{c}en 
-paraboli\v{c}nen profil. Lastne energije so v tem primeru enake% 
-\[ 
-E=\hbar \omega (n_{x}+n_{y}+1)  
-\]% 
-kjer je $\omega =\sqrt{\frac{a}{m}}$. Vidimo, da dobimo stanja, ki so 
-degenerirana: 
- 
-\[ 
-\begin{tabular}{ll} 
-$n_{x}$ & $n_{y}$ \\ \hline 
-\multicolumn{1}{|l}{$0$} & \multicolumn{1}{l|}{$0$} \\ \hline 
-\multicolumn{1}{|l}{$0$} & \multicolumn{1}{l|}{$1$} \\  
-\multicolumn{1}{|l}{$1$} & \multicolumn{1}{l|}{$0$} \\ \hline 
-\multicolumn{1}{|l}{$2$} & \multicolumn{1}{l|}{$0$} \\  
-\multicolumn{1}{|l}{$1$} & \multicolumn{1}{l|}{$1$} \\  
-\multicolumn{1}{|l}{$0$} & \multicolumn{1}{l|}{$1$} \\ \hline 
-\end{tabular}% 
-\] 
- 
-$n$ - to stanje je torej $(n+1)$ krat degenerirano. 
- 
-\subsubsection{Lastna stanja operatorja vrtilne koli\v{c}ine} 
- 
-Zgornji hamiltonian zapi\v{s}emo eksplicitno v polarnem koordinatnem 
-sistemu:  
-\[ 
-H\ =-\frac{\hbar ^{2}}{2m}\nabla ^{2}+\frac{1}{2}a\left( x^{2}+y^{2}\right) 
-=-\frac{\hbar ^{2}}{2m}\left[ \frac{1}{r}\frac{\partial }{\partial r}\left( r% 
-\frac{\partial }{\partial r}\right) +\frac{1}{r^{2}}\frac{\partial ^{2}}{% 
-\partial \varphi ^{2}}\right] +\frac{1}{2}ar^{2} 
-\]% 
-Vidimo, da komponenta $\varphi $ v izrazu ne nastopa eksplicitno. \v{C}e zapi% 
-\v{s}emo operator vrtilne koli\v{c}ine% 
-\[ 
-L_{z}=-i\hbar \frac{\partial }{\partial \varphi }, 
-\]% 
-vidimo, da velja: $\left[ L_{z},H\right] =0$, torej je lastna vrednost 
-operatorja $L_{z}$ dobro kvantno \v{s}tevilo. Lastna stanja vrtilne koli\v{c}% 
-ine dobimo:% 
-\[ 
-L_{z}|\psi \rangle =l|\psi \rangle  
-\]% 
-\[ 
--i\hbar \frac{\partial \psi }{\partial \varphi }=l\psi  
-\]% 
-\[ 
-\psi =Ae^{i\frac{l}{\hbar }\varphi } 
-\] 
- 
-Upo\v{s}tevamo periodi\v{c}ni robni pogoj:  
-\[ 
-\psi \left( 2\pi +\varphi \right) =\psi \left( \varphi \right)  
-\]% 
-\[ 
-e^{i\frac{l}{\hbar }2\pi }=1\Rightarrow \frac{l}{\hbar }2\pi =2\pi 
-m\Rightarrow l=m\hbar  
-\] 
- 
-Izraz \v{s}e normaliziramo:% 
-\[ 
-1=\int_{0}^{2\pi }\psi ^{\ast }\psi d\varphi =A^{2}2\pi \Rightarrow A=\frac{1% 
-}{\sqrt{2\pi }}  
-\]% 
-Valovna funkcija je torej% 
-\[ 
-\psi _{m}\left( \varphi \right) =\frac{1}{\sqrt{2\pi }}e^{im\varphi }  
-\]% 
-Ker sta torej $n=n_{1}+n_{2}$ in $m$ dobri kvantni \v{s}tevili, lahko iz teh 
-stanj sestavimo bazo. Poglejmo sedaj, kako izrazimo bazne vektorje te nove 
-baze $|nm\rangle $ z baznimi vektorji stare baze $|n_{1}n_{2}\rangle .$ 
- 
-Prvi dve stanji enodimenzionalnega harmoni\v{c}nega oscilatorja poznamo:% 
-\[ 
-\psi _{0}(x)=\frac{1}{\sqrt[4]{\pi x_{0}^{2}}}e^{-\frac{x^{2}}{2x_{0}^{2}}} 
-\]% 
-\[ 
-\psi _{1}(x)=\frac{\sqrt{2}x}{x_{0}}\psi _{0}(x) 
-\]% 
-Oglejmo si torej stanja $|1,0\rangle ,$ $|0,1\rangle $, (v bazi $% 
-|n_{1}n_{2}\rangle $) in jih posku\v{s}ajmo kombinirati tako, da bomo lahko 
-iz njih dobili lastna stanja v bazi $|nm\rangle ,$ ki bodo hkrati lastna 
-stanja $H$ in $L_{z}.$% 
-\[ 
-\psi _{01}=\psi _{0}\psi _{1}=\frac{1}{\sqrt[4]{\pi x_{0}^{2}}}e^{-\frac{% 
-x^{2}}{2x_{0}^{2}}}\sqrt{2}\frac{y}{x_{0}}\frac{1}{\sqrt[4]{\pi x_{0}^{2}}}% 
-e^{-\frac{y^{2}}{2x_{0}^{2}}}=\sqrt{\frac{2}{\pi }}\frac{1}{x_{0}^{2}}r\sin 
-\varphi \text{ }e^{-\frac{r^{2}}{2x_{0}^{2}}} 
-\]% 
-\[ 
-\psi _{10}=\psi _{1}\psi _{0}=\sqrt{\frac{2}{\pi }}\frac{1}{x_{0}^{2}}r\cos 
-\varphi \text{ }e^{-\frac{r^{2}}{2x_{0}^{2}}} 
-\]% 
-kjer smo upo\v{s}tevali polarni zapis:\ $x=r\cos \varphi $ in $y=r\sin 
-\varphi .$\ Vidimo, da lahko valovni funkciji sestavimo tako, da iz kotnih 
-funkcij dobimo ravno \v{c}len $e^{im\varphi }$, kjer je $m$ lahko 1 ali -1.% 
-\[ 
-|1,\pm 1\rangle _{nm}=\frac{1}{\sqrt{2}}\left( |1,0\rangle _{n_{1}n_{2}}\pm 
-i|0,1\rangle _{n_{1}n_{2}}\right)  
-\]% 
-Poleg valovne funkcije smo zapisali oznako baze. 
- 
-Ta postopek je bil trivialen za prvo vzbujeno stanje, za vi\v{s}ja stanja pa 
-ni mogo\v{c}e tako enostavno ugotoviti, zato bomo izra\v{c}un ponovili z 
-nekoliko bolj splo\v{s}nim postopkom. V splo\v{s}nem za lastna stanja 
-vrtilne koli\v{c}ine velja% 
-\[ 
-L_{z}\psi =l\psi  
-\]% 
-kjer je $l=m\hbar $. Zapi\v{s}emo splo\v{s}en nastavek za valovno funkcijo v 
-stari bazi:% 
-\[ 
-\psi =a|1,0\rangle +b|0,1\rangle  
-\]% 
-V nastavek smo vklju\v{c}ili zgolj stanja z isto energijo. Ta nastavek 
-vstavimo v ena\v{c}bo za lastna stanja vrtilne koli\v{c}ine in dobimo% 
-\[ 
-aL_{z}|1,0\rangle +bL_{z}|0,1\rangle =am\hbar |1,0\rangle +bm\hbar 
-|0,1\rangle  
-\]% 
-\v{C}e sedaj ena\v{c}bo posami\v{c} z desne mno\v{z}imo z $\langle 1,0|$ in $% 
-\langle 0,1|$ (oz. projeciramo ena\v{c}bo na posamezne smeri), dobimo ena% 
-\v{c}bi:  
-\[ 
-\langle 1,0|L_{z}|1,0\rangle a+\langle 1,0|L_{z}|0,1\rangle b=am\hbar  
-\]% 
-\[ 
-\langle 0,1|L_{z}|1,0\rangle a+\langle 0,1|L_{z}|0,1\rangle b=bm\hbar  
-\]% 
-Oziroma v matri\v{c}ni obliki:% 
-\[ 
-\begin{bmatrix} 
-\langle 1,0|L_{z}|1,0\rangle & \langle 1,0|L_{z}|0,1\rangle \\  
-\langle 0,1|L_{z}|1,0\rangle & \langle 0,1|L_{z}|0,1\rangle  
-\end{bmatrix}% 
-\begin{bmatrix} 
-a \\  
-b% 
-\end{bmatrix}% 
-=m\hbar  
-\begin{bmatrix} 
-a \\  
-b% 
-\end{bmatrix}% 
-\]% 
-Vidimo torej, da ima ta matrika lastni vrednosti, ki sta ravno lastni 
-vrednosti operatorja vrtilne koli\v{c}ine, in lastna vektorja, ki sta ravno 
-koeficienta razvoja valovne funkcije po novi bazi.\ Lastni vrednosti matrike 
-nam bosta torej definirali nova bazna vektorja, pripadajo\v{c}a lastna 
-vektorja pa bosta koeficienta razvoja teh novih baznih vektorjev po stari 
-bazi. V na\v{s}em primeru torej dobimo:% 
-\[ 
-\langle 0,1|L_{z}|0,1\rangle =\int\limits_{0}^{2\pi }\frac{2}{\pi }\frac{1}{% 
-x_{0}^{2}}r^{2}\sin \varphi \text{ }\left( -i\hbar \right) \cos \varphi  
-\text{ }e^{-\frac{2r^{2}}{2x_{0}^{2}}}rdrd\varphi =0\text{, \ \ \ \ integral 
-kotnega dela je o\v{c}itno ni\v{c}} 
-\]% 
-\[ 
-\langle 1,0|L_{z}|1,0\rangle =\int_{0}^{2\pi }\frac{2}{\pi }\frac{1}{% 
-x_{0}^{2}}r^{2}\cos \varphi \text{ }\left( i\hbar \right) \sin \varphi \text{ 
-}e^{-\frac{2r^{2}}{2x_{0}^{2}}}rdrd\varphi =0 
-\]% 
-\[ 
-\langle 0,1|L_{z}|1,0\rangle =\int\limits_{0}^{2\pi }\frac{2}{\pi }\frac{1}{% 
-x_{0}^{4}}r^{2}\sin \varphi \left( -i\hbar \right) \left( -\sin \varphi 
-\right) e^{\frac{-2r^{2}}{2x_{0}^{2}}}rdrd\varphi =i\hbar 
-\int\limits_{0}^{2\pi }|\psi _{01}|^{2}=i\hbar  
-\]% 
-\[ 
-\langle 1,0|L_{z}|0,1\rangle =\int\limits_{0}^{2\pi }\frac{2}{\pi }\frac{1}{% 
-x_{0}^{4}}r^{2}\cos \varphi \left( -i\hbar \right) \left( \cos \varphi 
-\right) e^{\frac{-2r^{2}}{2x_{0}^{2}}}rdrd\varphi =-i\hbar 
-\int\limits_{0}^{2\pi }|\psi _{10}|^{2}=-i\hbar  
-\] 
- 
-Imamo torej matriko:  
-\[ 
-\begin{bmatrix} 
-0 & i\hbar \\  
--i\hbar & 0% 
-\end{bmatrix}% 
-\]% 
-Lastni vrednosti sta:  
-\[ 
-\lambda ^{2}-\hbar ^{2}=0\Rightarrow \lambda _{1,2}=\pm \hbar  
-\]% 
-Lastna vektorja pa:% 
-\[ 
-c% 
-\begin{bmatrix} 
-1 \\  
-i% 
-\end{bmatrix}% 
-,\text{ \ \ }c% 
-\begin{bmatrix} 
-1 \\  
--i% 
-\end{bmatrix}% 
-,\text{ }c=\frac{1}{\sqrt{2}}\text{ (dobimo iz normalizacije)} 
-\]% 
-Kon\v{c}ni rezultat je torej: 
- 
-\[ 
-|1,1\rangle =\frac{1}{\sqrt{2}}\left( |1,0\rangle +i|0,1\rangle \right)  
-\]% 
-\[ 
-|1,-1\rangle =\frac{1}{\sqrt{2}}\left( |1,0\rangle -i|0,1\rangle \right)  
-\]% 
-kar je isto kot prej. Enako bi lahko postopali tudi za vi\v{s}ja vzbujena 
-stanja. 
- 
-\end{document} 

Redakcija: 16:09, 24 maj 2007

Naloga

Obravnavaj lastna stanja dvodimenzionalnega harmonskega oscilatorja

H=\frac{\mathbf{p^2}}{2m}+\frac{1}{2}a_x x^2+\frac{1}{2}a_y y^2.

V primeru, ko je ax = ay, poišči taka lastna stanja, ki so hkrati tudi lastna stanja operatorja vrtilne količine okoli osi z

L_z=-i\hbar\frac{\partial}{\partial z}.

Rešitev