Harmonski oscilator I

Iz Kvantna Mehanika I 2006 - 2007

(Primerjava redakcij)
Skoči na: navigacija, iskanje
Redakcija: 23:51, 21 marec 2007 (spremeni)
193.2.191.7 (Pogovor)

← Pojdi na prejšnje urejanje
Redakcija: 00:01, 22 marec 2007 (spremeni) (undo)
193.2.191.7 (Pogovor)

Novejše urejanje →
Vrstica 69: Vrstica 69:
Tu smo najprej namesto operatorja kraja vstavili njegov zapis z kreacijskim in anihilacijskim operatorjem, nato pa upoštevali distributivnost skalarnega produkta v Hilbertovem prostoru. Nazadnje smo upoštevali še, da je kreacijski operator adjungiran anihilacijskemu, od koder sledi, da je njegova pričakovana vrednost enaka konjugirani pričakovani vrednosti anihilacijskega operatorja. Tu smo najprej namesto operatorja kraja vstavili njegov zapis z kreacijskim in anihilacijskim operatorjem, nato pa upoštevali distributivnost skalarnega produkta v Hilbertovem prostoru. Nazadnje smo upoštevali še, da je kreacijski operator adjungiran anihilacijskemu, od koder sledi, da je njegova pričakovana vrednost enaka konjugirani pričakovani vrednosti anihilacijskega operatorja.
 +
 +<math>= \sqrt{2} x_{0} \textrm{Re}\left( \frac{1}{\sqrt{2}} \left[ \langle 0| e^{i\frac{\omega}{2}t} + \langle 1| e^{i\frac{3\omega}{2}t} \right] a \left[ |0\rangle e^{-i\frac{\omega}{2}t} + |1\rangle e^{-i\frac{3\omega}{2}t} \right] \frac{1}{\sqrt{2}} \right)</math>

Redakcija: 00:01, 22 marec 2007

Vsebina

Naloga

  1. Kako se s časom spreminjata pričakovani vrednosti operatorjev x in x2 v stanju \left|\psi,0\right\rangle=\frac{1}{\sqrt{2}}\left(\left|0\right\rangle+\left|1\right\rangle\right) harmonskega oscilatorja H=\frac{p^2}{2m}+\frac{kx^2}{2}?
  2. Izračunaj časovno odvisnost anihilacijskega operatorja a(t)=e^{\frac{iHt}{\hbar}}ae^{-\frac{iHt}{\hbar}} in rezultat uporabi za izračun količin iz naloge 1.

Rešitev

Formalizem harmonskega oscilatorja

K reševanju problema harmonskega oscilatorja navadno pristopimo z uporabo/uvedbo t.i. "lestvičnih" ("ladder") operatorjev, s čimer, ob upoštevanju Diracive pisave, hitreje pridemo do vseh pomembnejših rezultatov (brez zamudnega reševanja diferencialnih enačb običajnega kvantnomehanskega formalizma).


Kreacijski in anihilacijski operator

Uvedemo anihilacijski operator a in njemu adjungiran kreacijski operator a:

a = \frac{1}{\sqrt{2}}\left( \frac{\widehat{x}}{x_{0}}+i \frac{\widehat{p}}{p_{0}} \right)       in       a^{\dagger} = \frac{1}{\sqrt{2}}\left( \frac{\widehat{x}}{x_{0}}-i \frac{\widehat{p}}{p_{0}} \right) ,

kjer sta:

x_{0} = \sqrt{\frac{\hbar}{m \omega}}       in       p_{0} = \frac{\hbar}{x_{0}}  , pri čemer je frekvenca harmonskega oscilatorja:   \omega = \sqrt{\frac{k}{m}}.


Lastnosti
  1. \left[ a,a^{\dagger} \right] = 1.
  2. a^{\dagger}|n\rangle = \sqrt{n+1}|n+1\rangle \quad \Rightarrow \quad \left(a^{\dagger}\right)^{n}|0\rangle = \sqrt{n!}|n\rangle
  3. a|n\rangle = \sqrt{n}|n-1\rangle
  4. a|0\rangle = 0

Kreacijski operator torej zvišuje stanje harmonskega oscilatorja, medtem, ko nam anihilacijski operator stanje znižuje. Pri delovanju anihilacijskega operatorja na lastno valovno funkcijo osnovenega stanja, pa jo ta izniči.


Hamiltonov operator

S tako definiranima operatorjema na novo zapišemo še Hamiltonov operator:

H = \frac{\hat{p}^{2}}{2m}+\frac{1}{2}k\hat{x}^{2}=\hbar \omega \left( a^{\dagger}a+\frac{1}{2} \right).

Lastne energije harmonskega oscilatorja v stanju n so:

E_{n} = \hbar \omega \left( n + \frac{1}{2} \right)  , kjer med n - to lastno energijo in Hamiltonovim operatorjem velja zveza: E_{n} | n \rangle = H | n \rangle.


Operatorja kraja in gibalne količine

Operatorja kraja \hat{x} in gibalne količine \hat{p}, sta sebi adjungirana oz. hermitska, na novo pa ju z anihilacijskim in kreacijskim operatorjem zapišemo v obliki:

\hat{x} = \frac{x_{0}}{\sqrt{2}}\left( a + a^{\dagger} \right)       in       \hat{p} = \frac{p_{0}}{\sqrt{2}}\left( a - a^{\dagger} \right).


Časovna odvisnost pričakovane vrednosti x in njegovega kvadrata

Časovni razvoj valovne funkcije

Ob t=0 imamo harmonski oscilator v stanju z valovno funkcijo:

|\psi,0\rangle = \frac{1}{\sqrt{2}}\left( |0\rangle + |1\rangle \right).

Časovni razvoj valovne funkcije je:

|\psi,t\rangle = \frac{1}{\sqrt{2}}\left( |0\rangle e^{-i\frac{E_{0}}{\hbar}t} + |1\rangle e^{-i\frac{E_{1}}{\hbar}t} \right) = \frac{1}{\sqrt{2}}\left( |0\rangle e^{-i\frac{\omega}{2}t} + |1\rangle e^{-i\frac{3\omega}{2}t} \right) .


Časovna odvisnost pričakovane vrednosti x

\langle \psi | \hat{x} | \psi \rangle = \langle \psi | \frac{x_{0}}{\sqrt{2}}\left( a + a^{\dagger} \right) | \psi \rangle = \frac{x_{0}}{\sqrt{2}} \left( \langle a \rangle + \langle a \rangle^{\ast} \right) = \frac{x_{0}}{\sqrt{2}}2\textrm{Re}\langle a \rangle = \sqrt{2} x_{0} \textrm{Re} \langle \psi | a | \psi \rangle =

Tu smo najprej namesto operatorja kraja vstavili njegov zapis z kreacijskim in anihilacijskim operatorjem, nato pa upoštevali distributivnost skalarnega produkta v Hilbertovem prostoru. Nazadnje smo upoštevali še, da je kreacijski operator adjungiran anihilacijskemu, od koder sledi, da je njegova pričakovana vrednost enaka konjugirani pričakovani vrednosti anihilacijskega operatorja.

= \sqrt{2} x_{0} \textrm{Re}\left( \frac{1}{\sqrt{2}} \left[ \langle 0| e^{i\frac{\omega}{2}t} + \langle 1| e^{i\frac{3\omega}{2}t} \right] a \left[ |0\rangle e^{-i\frac{\omega}{2}t} + |1\rangle e^{-i\frac{3\omega}{2}t} \right] \frac{1}{\sqrt{2}} \right)